97.8k views
5 votes
Which trigonometric expression has the same value as sin 38 degrees?

A- tan 38
B cos 38
C tan 52
D cos 52

User Shish
by
8.1k points

2 Answers

3 votes

\bf \textit{Cofunction Identities} \\ \quad \\ sin\left((\pi)/(2)-{{ \theta}}\right)=cos({{ \theta}})\qquad \boxed{cos\left((\pi)/(2)-{{ \theta}}\right)=sin({{ \theta}})} \\ \quad \\ \quad \\ tan\left((\pi)/(2)-{{ \theta}}\right)=cot({{ \theta}})\qquad cot\left((\pi)/(2)-{{ \theta}}\right)=tan({{ \theta}}) \\ \quad \\ \quad \\ sec\left((\pi)/(2)-{{ \theta}}\right)=csc({{ \theta}})\qquad csc\left((\pi)/(2)-{{ \theta}}\right)=sec({{ \theta}})\\\\ -------------------------------


\bf sin(\underline{38^o})=cos(90^o-\underline{38^o})
User Rettvest
by
7.9k points
6 votes

Answer:

Option D.

Explanation:

Trigonometric expression given in the question is sin38°.

Since we know the co-functions identity


cos((\pi )/(2)-x)=sinx

By replacing x = 38°


cos((\pi )/(2)-38)=sin38

cos(90°- 38°) = sin38°

Therefore,
cos(52)=sin38

Option D. is the answer.

User Alexandre Rondeau
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories