97.8k views
5 votes
Which trigonometric expression has the same value as sin 38 degrees?

A- tan 38
B cos 38
C tan 52
D cos 52

User Shish
by
7.4k points

2 Answers

3 votes

\bf \textit{Cofunction Identities} \\ \quad \\ sin\left((\pi)/(2)-{{ \theta}}\right)=cos({{ \theta}})\qquad \boxed{cos\left((\pi)/(2)-{{ \theta}}\right)=sin({{ \theta}})} \\ \quad \\ \quad \\ tan\left((\pi)/(2)-{{ \theta}}\right)=cot({{ \theta}})\qquad cot\left((\pi)/(2)-{{ \theta}}\right)=tan({{ \theta}}) \\ \quad \\ \quad \\ sec\left((\pi)/(2)-{{ \theta}}\right)=csc({{ \theta}})\qquad csc\left((\pi)/(2)-{{ \theta}}\right)=sec({{ \theta}})\\\\ -------------------------------


\bf sin(\underline{38^o})=cos(90^o-\underline{38^o})
User Rettvest
by
7.5k points
6 votes

Answer:

Option D.

Explanation:

Trigonometric expression given in the question is sin38°.

Since we know the co-functions identity


cos((\pi )/(2)-x)=sinx

By replacing x = 38°


cos((\pi )/(2)-38)=sin38

cos(90°- 38°) = sin38°

Therefore,
cos(52)=sin38

Option D. is the answer.

User Alexandre Rondeau
by
7.9k points