51.9k views
5 votes
Integral of x(2x+3)^99 dx

1 Answer

3 votes
Let
y=2x+3, so that
x=\frac{y-3}2 and so
\mathrm dx=\frac{\mathrm dy}2. Then the integral is


\displaystyle\int x(2x+3)^(99)\,\mathrm dx=\int\left(\frac{y-3}2\right)y^(99)\frac{\mathrm dy}2

=\displaystyle\frac14\int(y^(100)-3y^(99))\,\mathrm dy

=\displaystyle(y^(101))/(404)-(3y^(100))/(400)+C

=\displaystyle((2x+3)^(101))/(404)-(3(2x+3)^(100))/(100)+C

=((2x+3)^(100))/(40400)(100(2x+3)-303)+C

=((2x+3)^(100))/(40400)(200x-3)+C
User Scarlette
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories