51.9k views
5 votes
Integral of x(2x+3)^99 dx

1 Answer

3 votes
Let
y=2x+3, so that
x=\frac{y-3}2 and so
\mathrm dx=\frac{\mathrm dy}2. Then the integral is


\displaystyle\int x(2x+3)^(99)\,\mathrm dx=\int\left(\frac{y-3}2\right)y^(99)\frac{\mathrm dy}2

=\displaystyle\frac14\int(y^(100)-3y^(99))\,\mathrm dy

=\displaystyle(y^(101))/(404)-(3y^(100))/(400)+C

=\displaystyle((2x+3)^(101))/(404)-(3(2x+3)^(100))/(100)+C

=((2x+3)^(100))/(40400)(100(2x+3)-303)+C

=((2x+3)^(100))/(40400)(200x-3)+C
User Scarlette
by
8.0k points