199k views
12 votes
Simplify the following:


\sqrt{(15x)/(x^(3) ) }

\frac{\sqrt{x^(2) } }{\sqrt{x^(3) } }

User Elsa Li
by
8.1k points

2 Answers

10 votes

Answer:


\sqrt{ \frac{15x}{ {x}^(3) } }= \sqrt{ \frac{15}{ {x}^(2) } } = \frac{ √(15) }{ \sqrt{ {x}^(2) } } = ( √(15) )/(x) \\

(√15)/x is the right answer.


\frac{ \sqrt{ {x}^(2) } }{\sqrt{{x}^(3)}} = \frac{ {x}^{ (2)/(2) } }{ {x}^{ (3)/(2)}}= \frac{x}{ {x}^{(1 + (1)/(2)) } } = \frac{x}{x * {x}^{ (1)/(2) } } = (1)/( √(x) ) \: \\

1/(√x) is the right answer.

User Fakingfantastic
by
7.7k points
8 votes

Answer:

For the first question:


\sqrt{(15x)/(x^3)}\\= \sqrt{(15)/(x^2)}\\= (√(15))/(x)\\

And the second


(√(x^2))/(√(x^3))\\= (x^2)^{(1)/(2) }(x^3)^{(-1)/(2) }\\= x^1 * x^{(-3)/(2) }\\= x^{(2)/(2)} * x^{(-3)/(2) }\\= x^{-(1)/(2)}\\= (1)/(√(x))

User Rajesh Maurya
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories