118k views
5 votes
Phosphorus-32 has a half-life of 14.0 days. Starting with 4.00 g of 32P, how many grams will remain after 84.0 days ?

2 Answers

3 votes
t₁=84 d
t₂=14 d
m₁=4 g

n=t₁/t₂
n=84/14=6

m₂=m₁/2ⁿ

m₂=4/(2⁶)=0.0625 g

0.0625 grams will remain after 84.0 days

User Mlishn
by
5.8k points
5 votes

Answer: The final amount will be 0.0625 grams.

Solution: Radioactive decay obeys first order kinetics and the first order integrated rate law equation is:


ln(A)=-kt+ln(A_0)

where,
(A_0) is the initial amount and A is the final amount, k is the decay constant and t is the time.

First of all we calculate the decay constant from given half life using the equation:


k=(0.693)/(halfLife)

Given half life is 14.0 days,

So,
k=(0.693)/(14.0days)


k=0.0495days^-^1

Initial amount is given as 4.00 g and the time is 84.0 days. Let's plug in the values in the first order integrated rate law equation and calculate the final amount.


ln(A)=-0.0495days^-^1(84.0days)+ln(4.00)


ln(A)=-4.158+1.386


ln(A)=-2.772

taking anti ln to both sides:


A=e^-^2^.^7^7^2

A = 0.0625

So, the remaining amount after 84.0 days will be 0.0625 grams.

User Rehan
by
6.4k points