You could use perturbation method to calculate this sum. Let's start from:

On the other hand, we have:

So from (1) and (2) we have:

Now, let's try to calculate sum

, but this time we use perturbation method.

but:
![S_(n+1)=\sum\limits_(k=0)^(n+1)k\cdot k!=0\cdot0!+\sum\limits_(k=1)^(n+1)k\cdot k!=0+\sum\limits_(k=0)^(n)(k+1)(k+1)!=\\\\\\= \sum\limits_(k=0)^(n)(k+1)(k+1)k!=\sum\limits_(k=0)^(n)(k^2+2k+1)k!=\\\\\\= \sum\limits_(k=0)^(n)\left[(k^2+1)k!+2k\cdot k!\right]=\sum\limits_(k=0)^(n)(k^2+1)k!+\sum\limits_(k=0)^n2k\cdot k!=\\\\\\=\sum\limits_(k=0)^(n)(k^2+1)k!+2\sum\limits_(k=0)^nk\cdot k!=\sum\limits_(k=0)^(n)(k^2+1)k!+2S_n\\\\\\ \boxed{S_(n+1)=\sum\limits_(k=0)^(n)(k^2+1)k!+2S_n}](https://img.qammunity.org/2018/formulas/mathematics/college/9sxm2g0vixvj11luuimjuhic7apepselvl.png)
When we join both equation there will be:
![\begin{cases}S_(n+1)=S_n+(n+1)(n+1)!\\\\S_(n+1)=\sum\limits_(k=0)^(n)(k^2+1)k!+2S_n\end{cases}\\\\\\ S_n+(n+1)(n+1)!=\sum\limits_(k=0)^(n)(k^2+1)k!+2S_n\\\\\\\\ \sum\limits_(k=0)^(n)(k^2+1)k!=S_n-2S_n+(n+1)(n+1)!=(n+1)(n+1)!-S_n=\\\\\\= (n+1)(n+1)!-\sum\limits_(k=0)^nk\cdot k!\stackrel{(\star)}{=}(n+1)(n+1)!-[(n+1)!-1]=\\\\\\=(n+1)(n+1)!-(n+1)!+1=(n+1)!\cdot[n+1-1]+1=\\\\\\= n(n+1)!+1](https://img.qammunity.org/2018/formulas/mathematics/college/75yz9a8jofbowj2nj7rhagyad40nf0l95c.png)
So the answer is:

Sorry for my bad english, but i hope it won't be a big problem :)