Changing the subject of the formula into v means expressing v in terms of the other given variables. So given the original equation, as shown below, we can rearrange it so that we have v isolated on one side.



To isolate v, we can just multiply s to both sides and come up with the final equation below.

Thus, we have v = s(1 - F/f) with v as the subject of the formula.
Answer: v = s(1 - F/f)