21.4k views
2 votes
Rewrite the rational exponent as a radical by extending the properties of integer exponents. (2 points)

2 to the 7 over 8 power, all over 2 to the 1 over 4 power

User Slavka
by
8.0k points

2 Answers

1 vote

7/2^5

So in letter answer C

User Yes Barry
by
8.6k points
2 votes

\bf a^{\frac{{ n}}{{ m}}} \implies \sqrt[{ m}]{a^( n)} \qquad \qquad \sqrt[{ m}]{a^( n)}\implies a^{\frac{{ n}}{{ m}}} \\\\\\ a^{-{ n}} \implies \cfrac{1}{a^( n)}\qquad \qquad \cfrac{1}{a^( n)}\implies a^{-{ n}}\\\\ -----------------------------\\\\


\bf \cfrac{2^{(7)/(8)}}{2^{(1)/(4)}}\implies \cfrac{2^{(7)/(8)}}{1}\cdot \cfrac{1}{2^{(1)/(4)}}\implies 2^{(7)/(8)}\cdot 2^{-(1)/(4)}\impliedby \begin{array}{llll} \textit{same base}\\ \textit{add the exponents} \end{array} \\\\\\ 2^{\cfrac{}{}(7)/(8)-(1)/(4)}\implies 2^{(5)/(8)}\implies \sqrt[8]{2^5}\implies \sqrt[8]{32}
User William Hilton
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories