66.9k views
3 votes
Verify (1/cosx+1)+(1/cosx-1)=-2cscxcotx

1 Answer

2 votes

\bf \cfrac{1}{cos(x)+1}+\cfrac{1}{cos(x)-1}=-2csc(x)cot(x)\\\\ -----------------------------\\\\ \cfrac{1}{cos(x)+1}+\cfrac{1}{cos(x)-1}\implies \cfrac{cos(x)-1+cos(x)+1}{[cos(x)+1][cos(x)-1]}\\\\ -----------------------------\\\\


\bf \textit{difference of squares} \\ \quad \\ (a-b)(a+b) = a^2-b^2\qquad \qquad a^2-b^2 = (a-b)(a+b)\\\\ and\qquad sin^2(\theta)+cos^2(\theta)=1\implies sin^2(\theta)=1-cos^2(\theta)\\\\ -----------------------------\\\\ \cfrac{cos(x)-1+cos(x)+1}{cos^2(x)-1}\implies \cfrac{cos(x)+cos(x)}{-[1-cos^2(x)]} \\\\\\ \cfrac{2cos(x)}{-sin^2(x)}\implies -2\cdot \cfrac{1}{sin(x)}\cdot \cfrac{cos(x)}{sin(x)}

and surely, you know what that is
User Vishal Ghosh
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.