87.3k views
0 votes
Determine the slope of the graph of x4 = ln(xy) at the point (1, e).

User Liky
by
6.4k points

1 Answer

2 votes

Answer-

The slope of the graph is 3e

Solution-

The given equation-


\Rightarrow x^4=\ln(xy)

Using logarithm properties,


\Rightarrow x^4=\ln(x)+\ln(y)

Taking derivatives of both sides,


\Rightarrow (d)/(dx)(x^4)=(d)/(dx)(\ln x+\ln y)


\Rightarrow (d)/(dx)(x^4)=(d)/(dx)(\ln x)+(d)/(dx)(\ln y)

Applying chain rule,


\Rightarrow (d)/(dx)(x^4)=(d)/(dx)(\ln x)+(d)/(dy)(\ln y)(dy)/(dx)


\Rightarrow 4x^3=(1)/(x)+(1)/(y)(dy)/(dx)


\Rightarrow (1)/(y)(dy)/(dx)=4x^3-(1)/(x)


\Rightarrow (dy)/(dx)=y(4x^3-(1)/(x))

Slope of
x^4=\ln(xy) at
(1,e) is


=(dy)/(dx)_(at\ (1,e))\\\\=e(4(1)^3-(1)/(1))\\\\=e(4-1)\\\\=3e

User PCalouche
by
5.5k points