209k views
0 votes
50 + x^2/20 + x/20=5x

User Llyle
by
8.0k points

1 Answer

3 votes
Answer: x = 87.582 , 11.148 .
_______________________________________
Step-by-step explanation
_________________________________
Given:
_________________________________
50 + (x²/20) + (x/20) = 5x ; Solve for "x" ;
_________________________________
→ First, let us multiply the entire equation (both sides) by "20" ; to get rid of the fractions ;
____________________________________
20 * {50 + (x²/20) + (x/20) = 5x } ;
____________________________________
to get:
____________________________________
1000 + x² + x = 100x ;
____________________________________
Subtract "x" from each side ;
____________________________________
1000 + x² + x − x = 100x − x ;

to get: 1000 + x² = 99x ;

Rewrite as:

x² + 1000 = 99x ;

Subtract "99x" from each side of the equation:
______________________________________
x² + 1000 − 99x = 99x − 99x ;

to get:

x² − 99x + 1000 = 0

This expression is written is "quadratic format" ; that is:
_______________________________________________
" ax² + bx + c = 0 ; a ≠ 0 " ;

in which: a = 1 (implied coefficient of "1"; since anything multiplied by "1"; is that same value) ;

b = -99 ;

c = 1000 ;
____________________________________________________
So, we can solve for "x" using the quadratic equation formula (since the expression cannot be factored):
_________________________________________________
x = {- b ± √(b² − 4ac) } / {2a} ;
_____________________________________________________
Note: - b = - (-99) = 99 ;
__________________________________
b² = (-99)² = 9801 .
__________________________________
4ac = 4*a*c = 4*1*1000 = 4000 ;
__________________________________
(b² − 4ac) = 9801 − 4000 = 5801
____________________________________________
√ (b² − 4ac) = √(5801) = 76.16429609731846
____________________________________________
2a = 2*a = 2*1 = 2
____________________________________________
Rewrite the quadratic formula:
____________________________________________
x = { - b ± √(b² − 4ac) } / {2a} ;
____________________________________________

→ x = (99 ± 76.16429609731846) / 2 ;
_____________________________________________
And, with the "±" ; we have 2 (TWO) potential solutions:
_______________________________________________
Case 1)
_______________________________________________
→ x = (99 + 76.16429609731846) / 2 ;

= (175.16429609731846) / 2

= 87.58214804865923 ; →round to: 87.582 .
___________________________________________________
Case 2)
___________________________________________________
→ x = (99 − 76.16429609731846) / 2 ;

= (22.83570390268154) / 2 ;

= 11.41785195134077 ; round to: 11.418.
______________________________________________
Answer: x = 87.582 , 11.148 .
_______________________________________________
User Yoav Gur
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories