Answer:
Average rate of change = -5.6 for the function h(x) = -22 – 5x + 13, over the interval -8 < x < 2.
Explanation:
Given the function h(x) = -22 -5x + 13, determine the average rate of change
of the function over the interval -8 < x < 2.
The formula used to find average rate of change is:
![Average\:Rate\:of\:Change=(h(b)-h(a))/(b-a)](https://img.qammunity.org/2022/formulas/mathematics/college/jszex97oig54h52e118jgql9zlwvj51l8r.png)
We have a = -8 and b = 2
We need to find h(b) and h(a)
Put x = 2 in the given equation: h(x) = -22 -5x + 13
h(2) = -22-5(2)+13
h(2) = -22-10+13
h(2) = -22-3
h(2) = -25
So, h(2) = -25
We get: h(b) =h(2) = -25
Put x = -8 in the given equation: h(x) = -22 -5x + 13
h(-8) = -22-5(-8)+13
h(-8) = -22+40+13
h(-8) = 31
So, h(-8) = 31
We get: h(a) =h(-8) = 31
Putting values in formula and finding average rate of change.
![Average\:Rate\:of\:Change=(h(b)-h(a))/(b-a)\\Average\:Rate\:of\:Change=(h(2)-h(-8))/(2-(-8))\\Average\:Rate\:of\:Change=(-25-(31))/(2+8)\\Average\:Rate\:of\:Change=(-25-31)/(10)\\Average\:Rate\:of\:Change=(-56)/(10)\\Average\:Rate\:of\:Change=-5.6](https://img.qammunity.org/2022/formulas/mathematics/college/nlyrxwnp56h0wdichhx014u9r3cupjlade.png)
So, Average rate of change = -5.6 for the function h(x) = -22 – 5x + 13, over the interval -8 < x < 2.