237,145 views
2 votes
2 votes
draw each of the following vectors, label an angle that specifies the vectors direction, then find its magnitude and direction.a. B= -4.0 I+ 4.0jb. r= (-2.0i-1.0j) cmc. v= (-10-100j) m/s d. a= (20i+10j) m/s^2the I's and j's have the hat and its the vector simble on the letters

User Attila Szili
by
3.2k points

1 Answer

22 votes
22 votes

\begin{gathered} A) \\ B=-4.0i+4.0j \\ |B|=√((-4.0)^2+(4.0)^2) \\ |B|=\sqrt[]{16^{}+16^{}} \\ |B|=\sqrt[]{32^{}} \\ |B|=4√(2) \\ \text{The magnitude of B is }4\sqrt[]{2} \\ \theta=\tan ^(-1)((4.0)/(-4.0))=135\text{ \degree} \\ The\text{ angle of B is }135\text{ \degree} \\ B) \\ R=(-2.0i-1.0j)cm \\ |R|=\sqrt[]{(-2.0)^2+(-1.0)^2} \\ |R|=√(4.0+1.0) \\ |R|=\sqrt[]{5.0} \\ \text{The magnitude of R is }\sqrt[]{5.0}cm \\ \theta=\tan ^(-1)((-1.0)/(-2.0))=26.57\text{ \degree, but it is below of negative x-axis, hence} \\ \theta=180+26.57=206.57\text{ \degree} \\ \text{The angle of R is }206.57\text{ \degree} \\ C) \\ V=(-10i-100j)\text{ m/s} \\ |V|=√((-10)^2+(-100)^2) \\ |V|=\sqrt[]{100+10000} \\ |V|=\sqrt[]{10100}=10√(101)\approx100.5\text{ m/s} \\ \text{The magnitude of V is }100.5\text{ m/s} \\ \theta=\tan ^(-1)((-100)/(-10))\approx264.29 \\ \text{The angle of V is }264.29\text{ \degree} \\ \\ D) \\ A=(20i+10j)m/s^2 \\ |A|=√(20^2+10^2) \\ |A|=√(400+100) \\ |A|=√(500)=10√(5)\approx22.36m/s^2 \\ \text{The magnitud of A is }22.36m/s^2 \\ \theta=\tan ^(-1)((10)/(20))=26.57\text{ \degree} \\ \text{The angle of A is }26.57\text{ \degree} \end{gathered}

draw each of the following vectors, label an angle that specifies the vectors direction-example-1
draw each of the following vectors, label an angle that specifies the vectors direction-example-2
draw each of the following vectors, label an angle that specifies the vectors direction-example-3
draw each of the following vectors, label an angle that specifies the vectors direction-example-4
User CodyEakins
by
3.0k points