330,729 views
40 votes
40 votes
Can somebody please help me simplify for number 8SHOULD BE POSITIVE EXPONENT

Can somebody please help me simplify for number 8SHOULD BE POSITIVE EXPONENT-example-1
User Mrye
by
3.2k points

1 Answer

14 votes
14 votes

The expression is given as,


\lbrack(x^3y^(-4))\text{ }*(2x^3y^3)^(-1)\rbrack^4

Distributing the power inside the bracket ,


\begin{gathered} \lbrack(x^3y^(-4))\text{ }*(2x^3y^3)^(-1)\rbrack^4\text{ = }\lbrack(x^3y^(-4))\text{ }*(2^(-1)x^(-3)y^(-3))^{}\rbrack^4 \\ \lbrack(x^3y^(-4))\text{ }*(2x^3y^3)^(-1)\rbrack^4\text{ = }\lbrack(x^3y^(-4))^4\text{ }*(2^(-1)x^(-3)y^(-3))^4\rbrack \end{gathered}

Simplifying further,


\lbrack(x^3y^(-4))\text{ }*(2x^3y^3)^(-1)\rbrack^4\text{ = }\lbrack(x^(12)y^(-16))*(2^(-4)x^(-12)y^(-12))\rbrack

Rearranging the like terms,


\lbrack(x^3y^(-4))\text{ }*(2x^3y^3)^(-1)\rbrack^4=16^(-1)*(x^(12)\text{ }*\text{ }x^(-12))*\text{ (}y^(-16)\text{ }*\text{ }y^(-12))

By using law of exponents,


\begin{gathered} x^a* x^b=x^(a+b) \\ x^0=\text{ 1} \end{gathered}

Therefore,


\begin{gathered} \lbrack(x^3y^(-4))\text{ }*(2x^3y^3)^(-1)\rbrack^4=16^(-1)\text{ }* x^(12-12)* y^(-16-12) \\ \lbrack(x^3y^(-4))\text{ }*(2x^3y^3)^(-1)\rbrack^4=16^(-1)\text{ }* x^0* y^(-28) \end{gathered}

Further,


\begin{gathered} \lbrack(x^3y^(-4))\text{ }*(2x^3y^3)^(-1)\rbrack^4=16^(-1)\text{ }y^(-28) \\ \lbrack(x^3y^(-4))\text{ }*(2x^3y^3)^(-1)\rbrack^4=\text{ }(1)/(16y^(28)) \end{gathered}

User Harpreet
by
3.2k points