Answer:
y = 7.33 m, x= 3 m, t = 1.608 s
it is still higher than the second building, which indicates that if it jumps it will be saved
Step-by-step explanation:
Let's use the projectile launch ratios, let's start with the range ratio
R = v₀² sin² 2θ / g
in this case the range is R = 7.9m and the angle is 45º, let's find the initial velocity
v₀² = R g / sin² 2θ
let's calculate
v₀ =
v₀ = 8.80 m / s
Let's find the components of the initial velocity
v₀ₓ = v₀ cos 45 = 8.80 cos 45
= v₀ sin 45 = 8.80 sin 45
v₀ₓ = 6.22 m / s
v_{oy} = 6.22 m / s
To save yourself, you have to be at the same time as the other building or higher.
x = v₀ₓ t
t = x / v₀ₓ
t = 10 / 6.22
t = 1.608 s
let's see how much it has descended in this time
y =y₀ + v_{oy} t - ½ g t²
y = 10+ 6.22 1.608 - ½ 9.8 1.608²
y = 7.33 m
therefore it is still higher than the second building, which indicates that if it jumps it will be saved