167k views
5 votes
Can someone help me with b and c?

Can someone help me with b and c?-example-1
User Myzz
by
8.0k points

1 Answer

6 votes

\bf \textit{Half-Angle Identities} \\ \quad \\ sin\left(\cfrac{{{ \theta}}}{2}\right)=\pm \sqrt{\cfrac{1-cos({{ \theta}})}{2}}\qquad \boxed{cos\left(\cfrac{{{ \theta}}}{2}\right)=\pm \sqrt{\cfrac{1+cos({{ \theta}})}{2}}}


\bf tan\left(\cfrac{{{ \theta}}}{2}\right)= \begin{cases} \pm \sqrt{\cfrac{1-cos({{ \theta}})}{1+cos({{ \theta}})}} \\ \quad \\ \cfrac{sin({{ \theta}})}{1+cos({{ \theta}})} \\ \quad \\ \cfrac{1-cos({{ \theta}})}{sin({{ \theta}})} \end{cases}\\\\ -----------------------------\\\\


\bf so\qquad \begin{cases} 2\cdot \cfrac{1}{8}\implies \cfrac{1}{4}\qquad thus\implies \cfrac{(1)/(4)}{2}\implies \cfrac{1}{8}\\\\ 2\cdot \cfrac{1}{16}\implies \cfrac{1}{8}\qquad thus\implies \cfrac{(1)/(8)}{2}\implies \cfrac{1}{16} \end{cases}\\\\ -----------------------------\\\\


\bf cos\left( \cfrac{\pi }{8} \right)\iff cos\left( \cfrac{(\pi )/(4)}{2} \right) \\\\\\ cos\left( \cfrac{(\pi )/(4)}{2} \right)=\pm \sqrt{\cfrac{1+cos\left( (\pi )/(4) \right)}{2}}\implies \pm \sqrt{\cfrac{1+(√(2))/(2)}{2}}\\\\ -----------------------------\\\\ cos\left( \cfrac{\pi }{16} \right)\iff cos\left( \cfrac{(\pi )/(8)}{2} \right) \\\\\\ cos\left( \cfrac{(\pi )/(8)}{2} \right)=\pm \sqrt{\cfrac{1+cos\left( (\pi )/(8) \right)}{2}}

and what is
\bf cos\left( \cfrac{\pi }{8} \right) \ ? well, you've just got it from the previous exercise :)

User DaniS
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories