87.2k views
1 vote
(cos(2x)-cos(4x))/(cos(2x)+cos(4x)) How does this fraction turn into (-2sin(3x)sin(-x))/(2cos(3x)cos(x))? Can you do a step by step proof to show how the 1st expression turns into the second expression?

User Brary
by
7.9k points

1 Answer

4 votes
Recall the the angle sum identity for cosine.


\cos(\theta+\varphi)=\cos\theta\cos\varphi-\sin\theta\sin\varphi

\cos(\theta-\varphi)=\cos\theta\cos\varphi+\sin\theta\sin\varphi

Adding the two equations together gives


\cos(\theta+\varphi)+\cos(\theta-\varphi)=2\cos\theta\cos\varphi

while subtracting gives


\cos(\theta+\varphi)-\cos(\theta-\varphi)=-2\sin\theta\sin\varphi

Replacing
\theta=3x and
\varphi=-x, you get


(\cos2x-\cos4x)/(\cos2x+\cos4x)=(\cos(3x+(-x))-\cos(3x-(-x)))/(\cos(3x+(-x))+\cos(3x-(-x)))=(-2\sin3x\sin(-x))/(2\cos3x\cos(-x))

Finally,
\cos(-x)=\cos x, so you get the second expression.
User PreetyP
by
8.0k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories