87.2k views
1 vote
(cos(2x)-cos(4x))/(cos(2x)+cos(4x)) How does this fraction turn into (-2sin(3x)sin(-x))/(2cos(3x)cos(x))? Can you do a step by step proof to show how the 1st expression turns into the second expression?

User Brary
by
5.7k points

1 Answer

4 votes
Recall the the angle sum identity for cosine.


\cos(\theta+\varphi)=\cos\theta\cos\varphi-\sin\theta\sin\varphi

\cos(\theta-\varphi)=\cos\theta\cos\varphi+\sin\theta\sin\varphi

Adding the two equations together gives


\cos(\theta+\varphi)+\cos(\theta-\varphi)=2\cos\theta\cos\varphi

while subtracting gives


\cos(\theta+\varphi)-\cos(\theta-\varphi)=-2\sin\theta\sin\varphi

Replacing
\theta=3x and
\varphi=-x, you get


(\cos2x-\cos4x)/(\cos2x+\cos4x)=(\cos(3x+(-x))-\cos(3x-(-x)))/(\cos(3x+(-x))+\cos(3x-(-x)))=(-2\sin3x\sin(-x))/(2\cos3x\cos(-x))

Finally,
\cos(-x)=\cos x, so you get the second expression.
User PreetyP
by
5.6k points