86.9k views
4 votes
In the above quadrilateral ABCD,

AD || EF || BC and
|AE| = 2 EB, BM = 4, |AD = 6, BC| =
, 9
Then DO​

In the above quadrilateral ABCD, AD || EF || BC and |AE| = 2 EB, BM = 4, |AD = 6, BC-example-1

1 Answer

5 votes

Answer:

The length of segment
\overline{DO} is
\displaystyle (24)/(5).

Explanation:

Start by verifying that
\triangle DAB \sim \triangle MEB, and that
\triangle DOA \sim \triangle BOC.

Both
\triangle DAB and
\triangle MEB contain the angle
\angle DBA. Hence, another pair of equal angles will be sufficient to prove
\triangle DAB \sim \triangle MEB by the angle-angle similarity postulate.

Notice that because
\overline{AD} \; \| \; \overline{EF}, the corresponding angles next to those two lines would be equal:
\angle MEB = \angle DAB. Both
\angle MEB is in
\rm \triangle MEB whereas
\angle DAB is in
\triangle DAB.

Hence,
\triangle DAB \sim \triangle MEB by the angle-angle similarity postulate.

Notice how
\angle DOA in
\triangle DOA and
\angle BOC in
\triangle BOC are two vertically opposite angles (and are thus equal to one another.) That is:
\angle DOA = \angle BOC.

Because
\overline{AD} \| \overline{BC}, the alternate interior angles
\angle DAO and
\angle BCO are also equal to one another. That is:
\angle DAO = \angle BCO

Hence,
\triangle DOA \sim \triangle BOC, also by the angle-angle similarity postulate.

Notice that
\triangle DAB \sim \triangle MEB implies that:
\begin{aligned} & \frac{\left| \overline{BM} \right|}{\left| \overline{BD} \right|} \\ &= \frac{\left|\overline{EB}\right|}{\left|\overline{AB}\right|} && (\triangle MEB \sim \triangle DAB) \\ &= \frac{\left|\overline{EB}\right|}{\left|\overline{AE}\right| + \left|\overline{EB}\right|} \\ &= \frac{\left|\overline{EB}\right|}{2\, \left|\overline{EB}\right| + \left|\overline{EB}\right|} && (\text{given that $\left|\overline{AB}\right| = 2\,\left|\overline{EB}\right|$})\\ &= (1)/(3)\end{aligned}.

Therefore:


\begin{aligned}&\left|\overline{BD}\right|\\ &= 3\, \left|\overline{BM}\right| \\ &= 12\end{aligned}.

Similarly,
\triangle DOA \sim \triangle BOC implies that:


\begin{aligned} \frac{\left| \overline{DO} \right|}{\left| \overline{BO} \right|} &= \frac{\left|\overline{AD}\right|}{\left|\overline{BC}\right|} && (\triangle DOA \sim \triangle BOC) \\ &= (6)/(9) = (2)/(3)\end{aligned}.

Therefore,
\displaystyle \left|\overline{BO}\right|= (3)/(2)\, \left|\overline{DO}\right|.


\begin{aligned} \frac{\left| \overline{DO} \right|}{\left| \overline{BD} \right|} &= \frac{\left| \overline{DO} \right|}{\left| \overline{BO} \right| + \left| \overline{DO} \right|} \\ &= \frac{\left| \overline{DO} \right|}{(3/2)\, \left| \overline{DO} \right| + \left| \overline{DO} \right|} = (2)/(5)\end{aligned}.

It was already found that
\left|\overline{BD}\right| = 12. Therefore:


\displaystyle \left|\overline{DO}\right| = (2)/(5)\, \left|\overline{BD}\right| = (24)/(5) = 4.8.

User Tom Savage
by
5.6k points