Answer:
An equation in point-slope form of the line that passes through (-4,1) and (4,3) will be:
![y-1=(1)/(4)\left(x+4\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/4gbzgu763yhb8flkhmqpyepi3sur1bfsvq.png)
Explanation:
Given the points
Finding the slope between the points (-4,1) and (4,3)
![\mathrm{Slope}=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/noa3dwrz4s6a4umc1ibrxg0crgl23zrf2o.png)
![\left(x_1,\:y_1\right)=\left(-4,\:1\right),\:\left(x_2,\:y_2\right)=\left(4,\:3\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/4eii2swly2z19wb86apmk0yausc01baguk.png)
![m=(3-1)/(4-\left(-4\right))](https://img.qammunity.org/2022/formulas/mathematics/high-school/h9vidzl6g7ns01fxrocn0g8elewovfdmyx.png)
Refine
![m=(1)/(4)](https://img.qammunity.org/2022/formulas/mathematics/high-school/g4gqgo6x09xwtq2wn4w9c1kiof9d2sajy1.png)
Point slope form:
![y-y_1=m\left(x-x_1\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/59wu8ly47al9vwq2ng2tgmsrx1lo1l4azh.png)
where
- m is the slope of the line
in our case,
substituting the values m = 1/4 and the point (-4,1) in the point slope form of line equation.
![y-y_1=m\left(x-x_1\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/59wu8ly47al9vwq2ng2tgmsrx1lo1l4azh.png)
![y-1=(1)/(4)\left(x-\left(-4\right)\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/k8acs407drki4iflo8ubj3mj3o3qy7w1hf.png)
![y-1=(1)/(4)\left(x+4\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/4gbzgu763yhb8flkhmqpyepi3sur1bfsvq.png)
Thus, an equation in point-slope form of the line that passes through (-4,1) and (4,3) will be:
![y-1=(1)/(4)\left(x+4\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/4gbzgu763yhb8flkhmqpyepi3sur1bfsvq.png)