43.0k views
0 votes
In triangle MNO, MN=20, NO=15, and MO=18. What is the approximate difference between the largest and smallest angle measures?

a) 2 degrees
b) 5 degrees
c) 14 degrees
d) 28 degrees

User Jmans
by
7.8k points

2 Answers

3 votes
a) 2 degrees is the answer
User Sky Scraper
by
7.6k points
2 votes

Answer:

d) 28 degrees

Explanation:

Be,

a = MN = 20

b = NO = 15

c = MO = 18

A = angle opposite side "a"

B = angle opposite side "b"

C = angle opposite side "c"

By the law of cosines, we know that,


a^(2)=b^(2)+c^(2)-2bc*CosA


b^(2)=a^(2)+c^(2)-2ac*CosB


c^(2)=a^(2)+b^(2)-2ab*CosC

Isolating "A" from the first equation we can clamp the angle opposite to the side "a", as follows


a^(2)=b^(2)+c^(2)-2bc*CosA


a^(2)-b^(2)-c^(2)=-2bc*CosA


CosA=(a^(2)-b^(2)-c^(2)) / (-2bc)


A=Cos^(-1)(a^(2)-b^(2)-c^(2)) / (-2bc)

Replace the values ​​and calculate the value of angle "A", like this


A=Cos^(-1)(20^(2)-15^(2)-18^(2)) / (-2*15*18)


A=Cos^(-1)(400-225-324) / (-540)


A=Cos^(-1)(-149) / (-540)


A=Cos^(-1)(0.2759259)

A = 73.98 ~ 74 degrees

Now calculate the value of angle B in a similar way,


b^(2)=a^(2)+c^(2)-2ac*CosB


b^(2)-a^(2)-c^(2)=-2ac*CosB


CosB=(b^(2)-a^(2)-c^(2)) / (-2ac)


B=Cos^(-1)(b^(2)-a^(2)-c^(2)) / (-2ac)

Replace the values ​​and calculate the value of angle "B", like this


B=Cos^(-1)(15^(2)-20^(2)-18^(2)) / (-2*20*18)


B=Cos^(-1)(225-400-324) / (-720)


B=Cos^(-1)(-499) / (-720)


B=Cos^(-1)(0.6930555)

B = 46.13 ~ 46 degrees

The sum of the angles of a triangle is 180 degrees, that is,

A + B + C = 180 degrees

Isolating C,

C = 180 - A - B

C = 180 - 74 - 46

C = 60

Being A = 74, B = 46, C = 60, then the approximate difference between the major and minor angle measures is,

Difference = A - C

Difference = 74 - 46

Difference = 28 degrees

Hope this helps!

User DaveSav
by
8.7k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories