43.0k views
0 votes
In triangle MNO, MN=20, NO=15, and MO=18. What is the approximate difference between the largest and smallest angle measures?

a) 2 degrees
b) 5 degrees
c) 14 degrees
d) 28 degrees

User Jmans
by
5.7k points

2 Answers

3 votes
a) 2 degrees is the answer
User Sky Scraper
by
5.4k points
2 votes

Answer:

d) 28 degrees

Explanation:

Be,

a = MN = 20

b = NO = 15

c = MO = 18

A = angle opposite side "a"

B = angle opposite side "b"

C = angle opposite side "c"

By the law of cosines, we know that,


a^(2)=b^(2)+c^(2)-2bc*CosA


b^(2)=a^(2)+c^(2)-2ac*CosB


c^(2)=a^(2)+b^(2)-2ab*CosC

Isolating "A" from the first equation we can clamp the angle opposite to the side "a", as follows


a^(2)=b^(2)+c^(2)-2bc*CosA


a^(2)-b^(2)-c^(2)=-2bc*CosA


CosA=(a^(2)-b^(2)-c^(2)) / (-2bc)


A=Cos^(-1)(a^(2)-b^(2)-c^(2)) / (-2bc)

Replace the values ​​and calculate the value of angle "A", like this


A=Cos^(-1)(20^(2)-15^(2)-18^(2)) / (-2*15*18)


A=Cos^(-1)(400-225-324) / (-540)


A=Cos^(-1)(-149) / (-540)


A=Cos^(-1)(0.2759259)

A = 73.98 ~ 74 degrees

Now calculate the value of angle B in a similar way,


b^(2)=a^(2)+c^(2)-2ac*CosB


b^(2)-a^(2)-c^(2)=-2ac*CosB


CosB=(b^(2)-a^(2)-c^(2)) / (-2ac)


B=Cos^(-1)(b^(2)-a^(2)-c^(2)) / (-2ac)

Replace the values ​​and calculate the value of angle "B", like this


B=Cos^(-1)(15^(2)-20^(2)-18^(2)) / (-2*20*18)


B=Cos^(-1)(225-400-324) / (-720)


B=Cos^(-1)(-499) / (-720)


B=Cos^(-1)(0.6930555)

B = 46.13 ~ 46 degrees

The sum of the angles of a triangle is 180 degrees, that is,

A + B + C = 180 degrees

Isolating C,

C = 180 - A - B

C = 180 - 74 - 46

C = 60

Being A = 74, B = 46, C = 60, then the approximate difference between the major and minor angle measures is,

Difference = A - C

Difference = 74 - 46

Difference = 28 degrees

Hope this helps!

User DaveSav
by
6.1k points