5.6k views
5 votes
Using laplace theorem find the answer

Using laplace theorem find the answer-example-1

1 Answer

1 vote
Here's the general approach.

For the first integral, assume
t>0. I'm also interpreting it to say


I_1=\displaystyle\int_0^\infty\sin(tx^2)\,\mathrm dx

(otherwise the integral simply diverges).

Writing
I_1=I_1(t), take the Laplace transform to get


\mathcal L_s\{I_1(t)\}=\displaystyle\int_0^\infty\left(\int_0^\infty\sin(tx^2)\,\mathrm dx\right)e^(-st)\,\mathrm dt

\mathcal L_s\{I_1(t)\}=\displaystyle\int_0^\infty\left(\underbrace{\int_0^\infty \sin(tx^2)e^(-st)}_{\mathcal L_s\{\sin(tx^2)\}}\,\mathrm dt\right)\,\mathrm dx

\mathcal L_s\{I_1(t)\}=\displaystyle\int_0^\infty(x^2)/(s^2+x^4)\,\mathrm dx

which is an elementary integral that can be computed by decomposing into partial fractions, or by employing a proper trigonometric substitution. I leave that calculation to you; you should end up with


\mathcal L_s\{I_1(t)\}=\frac\pi{2√(2s)}

and taking the inverse Laplace transform yields the answer,


I_1(t)=\mathcal L_t^(-1)\left\{\frac\pi{2√(2s)}\right\}=(\sqrt\pi)/(2√(2t))

Hopefully that should give you a decent idea of how this method works.

For the remaining integrals, you will need to introduce a parameter before proceeding. Here's what you can try:


I_2(t)=\displaystyle\int_0^\infty\frac{\sin(tx)}x\,\mathrm dx

I_3(t)=\displaystyle\int_0^\infty\frac{1-\cos(tx)}x\,\mathrm dx

I_4(t)=\displaystyle\int_0^\infty\frac{\sin^2(tx)}x\,\mathrm dx

For the fifth integral, you can make the observation that the given integrand already resembles the Laplace transform of
\frac{\sin t}t:


\underbrace{\mathcal L_s\left\{\frac{\sin t}t\right\}}_(Y(s))=\displaystyle\int_0^\infty e^(-st)\underbrace{\frac{\sin t}t}_(y(t))\,\mathrm dt\implies \int_0^\infty e^(-4t)\frac{\sin t}t\,\mathrm dt=Y(4)

Finally, for the last integral, you can use


I_6(t)=\displaystyle\int_0^\infty e^(-tx^2)\,\mathrm dx
User Jari Jokinen
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories