180k views
12 votes
5. Verify the property a× (b-c)= a×b-a×c for each of the following:
a= -3\5; b= 5\9; c= -10\3​

User English
by
7.4k points

1 Answer

7 votes

Answer:

We conclude that


a* \left(b-c\right)=\:a* b-a* c


-(7)/(3)=-(7)/(3)

L.H.S = R.H.S

Explanation:

Given the property expression


a* \left(b-c\right)=\:a* b-a* c

Given that:

  • a = -3/5
  • b = 5/9
  • c = -10/3

Determining the LEFT-HAND SIDE


a* \left(b-c\right)

substituting a= -3/5, b= 5/9 and c= -10/3​


a* \left(b-c\right)\:=\:\:-(3)/(5)* \left((5)/(9)-\left(-(10)/(3)\right)\right)\:\:\:\:\:\:\:\:\:\:\:\:


=-(3)/(5)* \:\left((5)/(9)+(10)/(3)\right)\:\:\:


=-(3)/(5)* (35)/(9)


=-(7)/(3)

Determining the RIGHT-HAND SIDE


\:a* \:b-a* \:c

substituting a= -3/5, b= 5/9 and c= -10/3​


\:a* \:b-a* \:c=ab-ac


=-(3)/(5)\left((5)/(9)\right)-\left(-(3)/(5)\right)\left(-(10)/(3)\right)


=-(3)/(5)\cdot (5)/(9)-(3)/(5)\cdot (10)/(3)


=-(15)/(45)-(30)/(15)


=-(1)/(3)-2


=(-7)/(3)

Apply the fraction rule:
(-a)/(b)=-(a)/(b)


=-(7)/(3)

Therefore, we conclude that


a* \left(b-c\right)=\:a* b-a* c


-(7)/(3)=-(7)/(3)

L.H.S = R.H.S

User Greg Michalec
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories