Answer:
The equation for the perpendicular bisector of the line segment will be:
![y=-(7)/(2)x-13](https://img.qammunity.org/2022/formulas/mathematics/high-school/c4ienql6zc77isdzcnaohvyh8dshtq3y5o.png)
Explanation:
Given the endpoints of the line segments
Determining the slope between (5,-4) and (-9, -8)
![\mathrm{Slope}=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/noa3dwrz4s6a4umc1ibrxg0crgl23zrf2o.png)
![\left(x_1,\:y_1\right)=\left(5,\:-4\right),\:\left(x_2,\:y_2\right)=\left(-9,\:-8\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/qoasj6wth4s3xg9fkc1hoq8l1py8c8rxie.png)
![m=(-8-\left(-4\right))/(-9-5)](https://img.qammunity.org/2022/formulas/mathematics/high-school/ewyvtznii80n6tdwmxeol0pcdupnmksj7w.png)
![m=(2)/(7)](https://img.qammunity.org/2022/formulas/mathematics/high-school/537wca23jty19nixqlrxobafhgdsbzqk7h.png)
We know that a line perpendicular to another line contains a slope that is the negative reciprocal of the slope of the other line, such as:
slope = m = 2/7
Thus, the slope of the the new perpendicular line = – 1/m = (-1)/(2/7)= -7/2
Next, determining the mid-point between (5,-4) and (-9, -8)
![\mathrm{Midpoint\:of\:}\left(x_1,\:y_1\right),\:\left(x_2,\:y_2\right):\quad \left((x_2+x_1)/(2),\:\:(y_2+y_1)/(2)\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/arkat8hy5vnzryka9t7d95c2y05qflma7j.png)
![\left(x_1,\:y_1\right)=\left(5,\:-4\right),\:\left(x_2,\:y_2\right)=\left(-9,\:-8\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/qoasj6wth4s3xg9fkc1hoq8l1py8c8rxie.png)
![=\left((-9+5)/(2),\:(-8-4)/(2)\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/cl65m3lxzwbroc9dxqginlt5jgxt8edfiu.png)
Refine
![=\left(-2,\:-6\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/213rnz2a9lejey7xw1qjbem4871x2qlhl4.png)
We know that the point-slope form of equation of line is
![y-y_1=m\left(x-x_1\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/59wu8ly47al9vwq2ng2tgmsrx1lo1l4azh.png)
where
- m is the slope of the line
substituting the slope of the perpendicular line -7/2 and the point (-2, -6)
![y-y_1=m\left(x-x_1\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/59wu8ly47al9vwq2ng2tgmsrx1lo1l4azh.png)
![y-\left(-6\right)=-(7)/(2)\left(x-\left(-2\right)\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/52bcyer1yjv3ennw47v0b6q1iun4wl6xhe.png)
![y+6=-(7)/(2)\left(x+2\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/pi09muzjnr6ygshiv33uh5s379paoul72i.png)
Subtract 6 from both sides
![y+6-6=-(7)/(2)\left(x+2\right)-6](https://img.qammunity.org/2022/formulas/mathematics/high-school/rqqb1bu0wudrg7uy5hfv44t1hzunbxxx35.png)
![y=-(7)/(2)x-13](https://img.qammunity.org/2022/formulas/mathematics/high-school/c4ienql6zc77isdzcnaohvyh8dshtq3y5o.png)
Therefore, the equation for the perpendicular bisector of the line segment will be:
![y=-(7)/(2)x-13](https://img.qammunity.org/2022/formulas/mathematics/high-school/c4ienql6zc77isdzcnaohvyh8dshtq3y5o.png)