39.0k views
1 vote
PLEASE HELP!! CALCULUS QUESTION

How to do this?

PLEASE HELP!! CALCULUS QUESTION How to do this?-example-1
User JvdBerg
by
7.3k points

1 Answer

3 votes

Answer:


\displaystyle \int\limits^(49)_(36) {(ln(y))/(√(y))} \, dy = 28ln(7) - 24ln(6) - 4

General Formulas and Concepts:

Algebra I

  • Exponential Rule [Rewrite]:
    \displaystyle b^(-m) = (1)/(b^m)
  • Exponential Rule [Root Rewrite]:
    \displaystyle \sqrt[n]{x} = x^{(1)/(n)}

Calculus

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Logarithmic Derivative:
\displaystyle (d)/(dx) [lnu] = (u')/(u)

Integrals

  • Definite Integrals

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Rule [Fundamental Theorem of Calculus 1]:
\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration by Parts:
\displaystyle \int {u} \, dv = uv - \int {v} \, du

  • [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig

Explanation:

Step 1: Define

Identify


\displaystyle \int\limits^(49)_(36) {(ln(y))/(√(y))} \, dy

Step 2: Integrate Pt. 1

Identify and find variables for Integration by Parts.

  1. [LIPET] Set:
    \displaystyle u = ln(y)
  2. [LIPET] Set:
    \displaystyle dv = (1)/(√(y)) \ dy
  3. [u] Differentiate [Logarithmic Derivative]:
    \displaystyle (du)/(dy) = (1)/(y)
  4. [u] Rewrite:
    \displaystyle du = (1)/(y) \ dy
  5. [dv] Integrate [Integration Rule - Reverse Power Rule]:
    \displaystyle v = 2√(y)

Step 3: Integrate Pt. 2

  1. [Integral] Integration by Parts:
    \displaystyle \int\limits^(49)_(36) {(ln(y))/(√(y))} \, dy = \bigg[ 2ln(y)√(y) \bigg] \bigg| \limits^(49)_(36) - \int\limits^(49)_(36) {(2√(y))/(y)} \, dy
  2. [Integral] Simplify/Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int\limits^(49)_(36) {(ln(y))/(√(y))} \, dy = \bigg[ 2ln(y)√(y) \bigg] \bigg| \limits^(49)_(36) - 2\int\limits^(49)_(36) {(1)/(√(y))} \, dy
  3. [Integral] Reverse Power Rule:
    \displaystyle \int\limits^(49)_(36) {(ln(y))/(√(y))} \, dy = \bigg[ 2ln(y)√(y) \bigg] \bigg| \limits^(49)_(36) - 2 \bigg[ 2√(y) \bigg] \bigg| \limits^(49)_(36)
  4. Evaluate [Integration Rule - FTC 1]:
    \displaystyle \int\limits^(49)_(36) {(ln(y))/(√(y))} \, dy = 28ln(7) - 24ln(6) - 2(2)
  5. Simplify:
    \displaystyle \int\limits^(49)_(36) {(ln(y))/(√(y))} \, dy = 28ln(7) - 24ln(6) - 4

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

User Peevesy
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories