39.0k views
1 vote
PLEASE HELP!! CALCULUS QUESTION

How to do this?

PLEASE HELP!! CALCULUS QUESTION How to do this?-example-1
User JvdBerg
by
5.2k points

1 Answer

3 votes

Answer:


\displaystyle \int\limits^(49)_(36) {(ln(y))/(√(y))} \, dy = 28ln(7) - 24ln(6) - 4

General Formulas and Concepts:

Algebra I

  • Exponential Rule [Rewrite]:
    \displaystyle b^(-m) = (1)/(b^m)
  • Exponential Rule [Root Rewrite]:
    \displaystyle \sqrt[n]{x} = x^{(1)/(n)}

Calculus

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Logarithmic Derivative:
\displaystyle (d)/(dx) [lnu] = (u')/(u)

Integrals

  • Definite Integrals

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Rule [Fundamental Theorem of Calculus 1]:
\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration by Parts:
\displaystyle \int {u} \, dv = uv - \int {v} \, du

  • [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig

Explanation:

Step 1: Define

Identify


\displaystyle \int\limits^(49)_(36) {(ln(y))/(√(y))} \, dy

Step 2: Integrate Pt. 1

Identify and find variables for Integration by Parts.

  1. [LIPET] Set:
    \displaystyle u = ln(y)
  2. [LIPET] Set:
    \displaystyle dv = (1)/(√(y)) \ dy
  3. [u] Differentiate [Logarithmic Derivative]:
    \displaystyle (du)/(dy) = (1)/(y)
  4. [u] Rewrite:
    \displaystyle du = (1)/(y) \ dy
  5. [dv] Integrate [Integration Rule - Reverse Power Rule]:
    \displaystyle v = 2√(y)

Step 3: Integrate Pt. 2

  1. [Integral] Integration by Parts:
    \displaystyle \int\limits^(49)_(36) {(ln(y))/(√(y))} \, dy = \bigg[ 2ln(y)√(y) \bigg] \bigg| \limits^(49)_(36) - \int\limits^(49)_(36) {(2√(y))/(y)} \, dy
  2. [Integral] Simplify/Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int\limits^(49)_(36) {(ln(y))/(√(y))} \, dy = \bigg[ 2ln(y)√(y) \bigg] \bigg| \limits^(49)_(36) - 2\int\limits^(49)_(36) {(1)/(√(y))} \, dy
  3. [Integral] Reverse Power Rule:
    \displaystyle \int\limits^(49)_(36) {(ln(y))/(√(y))} \, dy = \bigg[ 2ln(y)√(y) \bigg] \bigg| \limits^(49)_(36) - 2 \bigg[ 2√(y) \bigg] \bigg| \limits^(49)_(36)
  4. Evaluate [Integration Rule - FTC 1]:
    \displaystyle \int\limits^(49)_(36) {(ln(y))/(√(y))} \, dy = 28ln(7) - 24ln(6) - 2(2)
  5. Simplify:
    \displaystyle \int\limits^(49)_(36) {(ln(y))/(√(y))} \, dy = 28ln(7) - 24ln(6) - 4

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

User Peevesy
by
5.9k points