111k views
1 vote
If m angle 2 = 3x+1 and m angle 3 =2x+14 what is m angle 2

If m angle 2 = 3x+1 and m angle 3 =2x+14 what is m angle 2-example-1
User Omry Zobel
by
8.5k points

2 Answers

2 votes
Don't mind the top. The answer is 52
If m angle 2 = 3x+1 and m angle 3 =2x+14 what is m angle 2-example-1
User Mentlegen
by
8.6k points
6 votes
Answer: m∡2 = 106° .
________________________
Step-by-step explanation:
________________

Note that: "∡2" and "∡3" are "supplementary angles"; as shown in the diagram; since both of them from a "straight line".

As such: " m∡2 + m∡3 = 180 " .
______________________________________________________
(Note: The definition of supplementary angles.).
______________________________________________________
We are given:
_____________________
m∡2 = 3x + 1 ;
___________________
m∡3 = 2x + 4 ;
___________________
We are to find:
__________________________
"m∡2" ; or, "(3x + 1").
__________________________
To begin:
___________________________
Since: "m∡2 + m∡3 = 180 " ;
___________________________
We need to plug in our given values for:
____________________________________
"m∡2" and "m∡3" ; and set the equation equal to "180";
and then "solve for "x" ;
____________________________________
m∡2 + m∡3 =
____________________________________
(3x + 1) + (2x +4) = 180 ;
____________________________________
3x + 1 + 2x + 4 = 180 ;
____________________________________
Combine the "like terms" on the left-hand side of the equation; to simplify:
_________________________________________________________
+3x +2x = 5x ;
___________________________________
+1 + 4 = 5 ;
___________________________________
And rewrite the equation as:
___________________________________
5x + 5 = 180 ;
___________________________________
Subtract "5" from EACH side of the equation:
____________________________________
5x + 5 − 5 = 180 − 5 ;
____________________________________
to get:
____________________________________
5x = 175 ;
_________________________________________________________
Now, divide EACH SIDE of the equation by "5" ;
to isolate "x" on one side of the equation; and to solve for "x" ;
____________________________________________
5x / 5 = 175 / 5 ;
____________________________________________
to get:
____________________________________________
x = 35 .
____________________________________________
Now, the question asks, "What is m∡2 ?"
____________________________________________
We are given:
____________________________________________
" m∡2 = 3x + 1 " ;
_________________________________________________
Since we know that "x = 35" (our solved value for "x");
we can plug in this value, "35" ;
for "x" ; in the expression given that represents " m∡2 " ;
to solve for " m∡2 " ;
_________________________________________________
m∡2 = 3x + 1 = 3*(35) + 1 = 105 + 1 = 106 .
_________________________________________________
The answer is: m∡2 = 106° .
_________________________________________________
Does this value make sense? Let us check our work:
________________________________________________
If "m∡2 + m∡3 = 180 ;
________________________________________________
then, " m∡3 = (180 − m∡2) = (180 −106) = 74 ;
________________________________________________
Does m∡3 = 174 ??
________________________________________________
We are given: "m∡3 = 2x + 4" ;
________________________________________________
Let us plug in our solved value, "35", for "x" in this expression;
to see if " m∡3 = 74 " ;
________________________________________________
m∡3 = 2x + 4 = 2*(35) + 4 = 70 + 4 = 74?? Yes!
___________________________________________________________
User Guness
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories