95.6k views
2 votes
Graph the six terms of a finite sequence where a1=5 and r=1.25

User Inkblot
by
8.1k points

2 Answers

6 votes

\bf n^(th)\textit{ term of a geometric sequence} \\\\ a_n=a_1\cdot r^(n-1)\qquad \begin{cases} a_1=\textit{first term}\\ n=n^(th)\ term\\ r=\textit{common ratio} \end{cases}


\bf -----------------------------\\ \begin{array}{ccllll} term&value\\ x&y\\ \textendash\textendash\textendash\textendash\textendash\textendash&\textendash\textendash\textendash\textendash\textendash\textendash\\ 1&5\cdot (1.25)^(1-1)\\ 2&5\cdot (1.25)^(2-1)\\ 3&5\cdot (1.25)^(3-1)\\ 4&5\cdot (1.25)^(4-1)\\ 5&5\cdot (1.25)^(5-1)\\ 6&5\cdot (1.25)^(6-1)\\ \end{array}

User ChromeHearts
by
8.3k points
3 votes

Answer:Given below

Explanation:

Given

a=5

common ratio(r)=1.25

therefore next term is
ar,ar^2.......


a_2=ar=5* 1.25=6.25


a_3=ar^2=5* 1.25^2=7.8125


a_4=ar^3=5* 1.25^3=9.765


a_5=ar^4=5* 1.25^4=12.207


a_6=ar^5=5* 1.25^5=15.258

User JSBob
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories