95.6k views
2 votes
Graph the six terms of a finite sequence where a1=5 and r=1.25

User Inkblot
by
6.2k points

2 Answers

6 votes

\bf n^(th)\textit{ term of a geometric sequence} \\\\ a_n=a_1\cdot r^(n-1)\qquad \begin{cases} a_1=\textit{first term}\\ n=n^(th)\ term\\ r=\textit{common ratio} \end{cases}


\bf -----------------------------\\ \begin{array}{ccllll} term&value\\ x&y\\ \textendash\textendash\textendash\textendash\textendash\textendash&\textendash\textendash\textendash\textendash\textendash\textendash\\ 1&5\cdot (1.25)^(1-1)\\ 2&5\cdot (1.25)^(2-1)\\ 3&5\cdot (1.25)^(3-1)\\ 4&5\cdot (1.25)^(4-1)\\ 5&5\cdot (1.25)^(5-1)\\ 6&5\cdot (1.25)^(6-1)\\ \end{array}

User ChromeHearts
by
6.1k points
3 votes

Answer:Given below

Explanation:

Given

a=5

common ratio(r)=1.25

therefore next term is
ar,ar^2.......


a_2=ar=5* 1.25=6.25


a_3=ar^2=5* 1.25^2=7.8125


a_4=ar^3=5* 1.25^3=9.765


a_5=ar^4=5* 1.25^4=12.207


a_6=ar^5=5* 1.25^5=15.258

User JSBob
by
5.8k points