213k views
1 vote
Rewrite the rational exponent as a radical by extending the properties of integer exponents

2 3/4/ 2 1/2

User Dkimot
by
8.5k points

1 Answer

5 votes
not sure I can read those exponents above, but in case it helps ->
\bf a^{\frac{{ n}}{{ m}}} \implies \sqrt[{ m}]{a^( n)} \\ \sqrt[{ m}]{a^( n)}\implies a^{\frac{{ n}}{{ m}}} \\\quad \\\\ % rational negative exponent a^{-\frac{{ n}}{{ m}}} = \cfrac{1}{a^{\frac{{ n}}{{ m}}}} \implies \cfrac{1}{\sqrt[{ m}]{a^( n)}}\qquad \\\\\\ % radical denominator \cfrac{1}{\sqrt[{ m}]{a^( n)}}= \cfrac{1}{a^{\frac{{ n}}{{ m}}}}\implies a^{-\frac{{ n}}{{ m}}}
User James Culshaw
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories