213k views
1 vote
Rewrite the rational exponent as a radical by extending the properties of integer exponents

2 3/4/ 2 1/2

User Dkimot
by
8.5k points

1 Answer

5 votes
not sure I can read those exponents above, but in case it helps ->
\bf a^{\frac{{ n}}{{ m}}} \implies \sqrt[{ m}]{a^( n)} \\ \sqrt[{ m}]{a^( n)}\implies a^{\frac{{ n}}{{ m}}} \\\quad \\\\ % rational negative exponent a^{-\frac{{ n}}{{ m}}} = \cfrac{1}{a^{\frac{{ n}}{{ m}}}} \implies \cfrac{1}{\sqrt[{ m}]{a^( n)}}\qquad \\\\\\ % radical denominator \cfrac{1}{\sqrt[{ m}]{a^( n)}}= \cfrac{1}{a^{\frac{{ n}}{{ m}}}}\implies a^{-\frac{{ n}}{{ m}}}
User James Culshaw
by
8.2k points

No related questions found