198k views
1 vote

\int (dx)/(xln^(p)x ) How would i integrate this? I tried integration by parts but I couldn't figure out a useful way to use it

1 Answer

6 votes
Substitute
u=\ln x, so that
\mathrm du=\frac{\mathrm dx}x. The integral is then equivalent to


\displaystyle\int(\mathrm dx)/(x\ln^px)=\int(\mathrm du)/(u^p)=\begin{cases}(u^(p+1))/(p+1)+C&\text{for }p\\eq1\\\\\ln|u|+C&\text{for }p=1\end{cases}

Then transforming back to
x gives


\displaystyle\int(\mathrm dx)/(x\ln^px)=\begin{cases}(\ln^(p+1)x)/(p+1)+C&\text{for }p\\eq1\\\\\ln|\ln x|+C&\text{for }p=1\end{cases}
User Arda Keskiner
by
6.4k points