Hi, It is only to replace Cosx = Sinx
In the Identity equation :
(Cosx)^2 + (Sinx)^2 = 1
As Cos = Sin
Then,
(Sinx)^2 + (Sinx)^2 = 1
2.(Sinx)^2 = 1
Dividing both the sides by 2
(Sinx)^2 = 1/2
Applying square root on both the sides:
(Sinx) = √(1) / √(2)
Sinx = √(1)/√(2) × √(2)/√(2)
Sinx = √(2)/√(4)
Sinx = √(2)/2
Applying ArcSin on the sides of equation:
ArcSin(Sinx) = ArcSin( √(2)/2)
Canceling AcrSin with Sin
X = 45°
Or
As pi = 180°
Then applying the rule of 3
Pi _______ 180°
Y _______ 45°
Pi.45° = 180° .Y
180y = 45pi
y = 45pi/180
y = pi/4
As the Cos and Sin are igual in the 3 quadrant.
y = 45° + 180°
y = 225°
Or
y = pi/4 + pi
y = 5pi/4
Then,
y = pi/4 or 5pi/4
I hope this helped