7.1k views
3 votes
Rewrite in simplest radical form 1/x^-3/6

1 Answer

3 votes

\bf a^{\frac{{ n}}{{ m}}} \implies \sqrt[{ m}]{a^( n)} \qquad \qquad \sqrt[{ m}]{a^( n)}\implies a^{\frac{{ n}}{{ m}}} \\\quad \\ % rational negative exponent a^{-\frac{{ n}}{{ m}}} = \cfrac{1}{a^{\frac{{ n}}{{ m}}}} \implies \cfrac{1}{\sqrt[{ m}]{a^( n)}} \\ \quad \\ \quad \\ % radical denominator \cfrac{1}{\sqrt[{ m}]{a^( n)}}= \cfrac{1}{a^{\frac{{ n}}{{ m}}}}\implies a^{-\frac{{ n}}{{ m}}}\qquad thus\\ ----------------------------\\ \\ \quad \\
\bf \\ \quad \\ \cfrac{1}{x^{-(3)/(6)}}\implies \cfrac{1}{x^{-(1)/(2)}}\implies \cfrac{1}{(1)/(x(1)/(2))}\implies \cfrac{1}{1}\cdot \cfrac{x^{(1)/(2)}}{1} \\ \quad \\ x^{(1)/(2)}\implies √(x)
User CGS
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories