223k views
0 votes
The regular hexagon has a radius of 4 in.

What is the approximate area of the hexagon?

24 in.2
42 in.2
48 in.2
84 in.2

User Kartlee
by
6.1k points

2 Answers

3 votes

\bf \textit{area of a regular polygon}=\cfrac{1}{2}nR^2\cdot sin\left((360)/(n) \right) \\ \quad \\ \quad \\ \begin{cases} n=\textit{number of sides in the polygon}\\ R=\textit{radius of the polygon} \end{cases}

so, sides= n= 6
radius = R = 4

\bf \textit{area of a regular polygon}=\cfrac{1}{2}nR^2\cdot sin\left((360)/(n) \right) \\ \quad \\ \quad \\ \begin{cases} n=\textit{number of sides in the polygon}\\ R=\textit{radius of the polygon} \end{cases} \\ \quad \\ \quad \\ \cfrac{1}{2}6\cdot 4^2\cdot sin\left((360)/(6) \right)\implies \cfrac{1}{2}\cdot 96\cdot sin\left(60^o \right) \\ \quad \\ 48\cdot sin\left(60^o \right)
User Jorn Vernee
by
7.3k points
4 votes

we know that

The Area of a Regular Polygon is equal to the formula


A=\cfrac{1}{2}nr^2\cdot sin\left((360)/(n) \right)

where

n is number of sides in the polygon

r is the radius of the polygon

In this problem

the regular polygon is a hexagon with radius of
4 in

So


n=6\\ r=4 in

Substitute the value of n and r in the formula above


A=\cfrac{1}{2}*6*4^2\cdot sin\left((360)/(6) \right)\\ \\A=\cfrac{96}{2}* sin(60) \\ \\ A=(96)/(2) *(√(3))/(2) \\ \\ A=24√(3) \\ \\ A=41.57 in^(2)

therefore

the answer is the option


42 in.2

User Thebrooklyn
by
6.5k points