53.9k views
3 votes
Find the sum of a finite arithmetic sequence from n = 1 to n = 15, using the expression 2n + 5

User Moszeed
by
8.6k points

2 Answers

3 votes
Assuming you mean the sequence is given explicitly by
a_n=2n+5, the sum of the first 15 terms is


\displaystyle\sum_(n=1)^(15)a_n=\sum_(n=1)^(15)(2n+5)=2\sum_(n=1)^(15)n+5\sum_(n=1)^(15)1

Recall Faulhaber's formulas, which say


\displaystyle\sum_(n=1)^k1=k

\displaystyle\sum_(n=1)^kn=\frac{k(k+1)}2

Our sum is then


\displaystyle\sum_(n=1)^(15)a_n=2\frac{15*16}2+5*15=315
User Eduardo
by
8.5k points
3 votes

Answer:


\sum _(n=1)^(15)2n+\sum _(n=1)^(15)5=240+75=315

Explanation:

Given:
\sum _(n=1)^(15)\:2n+5

We have to calculate the sum of given expression.

Consider the given expression
\sum _(n=1)^(15)\:2n+5

Apply sum rule,
\sum a_n+b_n=\sum a_n+\sum b_n , we get,


=\sum _(n=1)^(15)2n+\sum _(n=1)^(15)5

Now first consider
\sum _(n=1)^(15)2n

Using constant multiplication rule,
\sum c\cdot a_n=c\cdot \sum a_n

we have,


=2\cdot \sum \:_(n=1)^(15)n

Apply sum formula,
\sum _(k=1)^nk=(1)/(2)n\left(n+1\right)


=(1)/(2)\cdot \:15\left(15+1\right)=120\\\\ \sum _(n=1)^(15)2n=240

Now consider
\sum _(n=1)^(15)5

Apply sum formula,
\sum _(k=1)^n\:a\:=\:a\cdot n

Here, a = 5 and n = 15

we get
\sum _(n=1)^(15)5=75

Therefore
\sum _(n=1)^(15)2n+\sum _(n=1)^(15)5=240+75=315

User Hella
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories