53.9k views
3 votes
Find the sum of a finite arithmetic sequence from n = 1 to n = 15, using the expression 2n + 5

User Moszeed
by
8.6k points

2 Answers

3 votes
Assuming you mean the sequence is given explicitly by
a_n=2n+5, the sum of the first 15 terms is


\displaystyle\sum_(n=1)^(15)a_n=\sum_(n=1)^(15)(2n+5)=2\sum_(n=1)^(15)n+5\sum_(n=1)^(15)1

Recall Faulhaber's formulas, which say


\displaystyle\sum_(n=1)^k1=k

\displaystyle\sum_(n=1)^kn=\frac{k(k+1)}2

Our sum is then


\displaystyle\sum_(n=1)^(15)a_n=2\frac{15*16}2+5*15=315
User Eduardo
by
8.5k points
3 votes

Answer:


\sum _(n=1)^(15)2n+\sum _(n=1)^(15)5=240+75=315

Explanation:

Given:
\sum _(n=1)^(15)\:2n+5

We have to calculate the sum of given expression.

Consider the given expression
\sum _(n=1)^(15)\:2n+5

Apply sum rule,
\sum a_n+b_n=\sum a_n+\sum b_n , we get,


=\sum _(n=1)^(15)2n+\sum _(n=1)^(15)5

Now first consider
\sum _(n=1)^(15)2n

Using constant multiplication rule,
\sum c\cdot a_n=c\cdot \sum a_n

we have,


=2\cdot \sum \:_(n=1)^(15)n

Apply sum formula,
\sum _(k=1)^nk=(1)/(2)n\left(n+1\right)


=(1)/(2)\cdot \:15\left(15+1\right)=120\\\\ \sum _(n=1)^(15)2n=240

Now consider
\sum _(n=1)^(15)5

Apply sum formula,
\sum _(k=1)^n\:a\:=\:a\cdot n

Here, a = 5 and n = 15

we get
\sum _(n=1)^(15)5=75

Therefore
\sum _(n=1)^(15)2n+\sum _(n=1)^(15)5=240+75=315

User Hella
by
8.0k points