116k views
2 votes
What is the simplified base for the function f(x) = 2(3√27(2x)?

2
3
9
18

User Danstahr
by
5.9k points

2 Answers

5 votes

Answer:

Option C is correct

9 the simplified base for the given function f(x)

Explanation:

Using exponent rules:


(x^m)^n = x^(mn)


\sqrt[n]{x^b} = x^{(b)/(n)}

Given the function:


f(x) = 2\sqrt[3]{27^(2x)}

We can write 27 as:


27 = 3 \cdot 3 \cdot 3 = 3^3

then;


f(x) = 2\sqrt[3]{(3^3)^(2x)}

Apply the exponent rules:


f(x) = 2\sqrt[3]{3^(6x)}

Apply the exponent rules:


f(x) =2 \cdot (3^(6x))^{(1)/(3)} = 2 \cdot 3^(2x)


f(x) = 2 \cdot (3^2)^x = 2 \cdot 9^x


f(x) =2 \cdot 9^x

On comparing with exponential function
f(x) = ab^x where, b is base of the exponent function, then

b = 9

Therefore, the simplified base for the given function is, 9

User SpokaneDude
by
6.1k points
5 votes

Answer:

option C is correct i.e. 9

Explanation:

We have given that :
f(x)=2 \sqrt[3]{27^(2x)}

To find : The simplified base of the function f(x)

Solution:

Now, we solve the equation


f(x)=2 \sqrt[3]{27^(2x)}


f(x)=2(27^x)^{(2)/(3)}


f(x)=2(3^(2x))


f(x)=2((3^2)^(x))


f(x)=2(9^(x))

Therefore, the simplified base of the function f(x) is 9


User Sergeyol
by
5.9k points