161k views
1 vote
Derivative of xsinx by using first principle

1 Answer

2 votes
Let
f(x)=x\sin x. Then the derivative is given by the limit


f'(x)=\displaystyle\lim_(h\to0)\frac{f(x+h)-f(x)}h=\lim_(h\to0)\frac{(x+h)\sin(x+h)-x\sin x}h

Expand the numerator:


(x+h)\sin(x+h)-x\sin x=x(\sin x\cos h+\sin h\cos x)+h(\sin x\cos h+\sin h\cos x)-x\sin x

This can be rewritten as


x\sin x(\cos h-1)+x\cos x\sin h+h(\sin x\cos h+\sin h\cos x)

So you're left with the limit


\displaystyle\lim_(h\to0)\frac{x\sin x(\cos h-1)+x\cos x\sin h+h(\sin x\cos h+\sin h\cos x)}h

which you can split up as a sum of factored limits


\displaystyle x\sin x\lim_(h\to0)\frac{\cos h-1}h+x\cos x\lim_(h\to0)\frac{\sin h}h+\lim_(h\to0)\frac{h(\sin x\cos h+\sin h\cos x)}h

The first two limits use two special limits,


\displaystyle\lim_(h\to0)\frac{1-\cos h}h=0\quad\text{and}\quad\lim_(h\to0)\frac{\sin h}h=1

while for the last, you can cancel out the factors of
h in the numerator and denominator. You're left with


\displaystyle 0+x\cos x+\lim_(h\to0)(\sin x\cos h+\sin h\cos x)

You have
\lim\limits_(h\to0)\cos h=1 and
\lim\limits_(h\to0)\sin h=0, so the derivative is


f'(x)=x\cos x+\sin x
User PROrock
by
6.3k points