104k views
0 votes
What is the distance between the points (14, 29) and (14, 58) in the coordinate plane?

2 Answers

7 votes
Answer: 29 units

∞∞∞∞∞∞∞∞∞
Step-by-step explanation:
∞∞∞∞∞∞∞∞∞


\textnormal {Formula : Distance }= √((Y_2 - Y_1) ^2+(X_2 - X_1)^2)


\textnormal {Plug }(X_1 ,Y_1) = (14, 29) \textnormal { and } (X_2 , Y_2) = (14, 58) \textnormal { into the formula: }


\textnormal {Distance }= √((58 -29) ^2+(14-14)^2) = √(29^2 + 0^2) = √(841) = 29 \textnormal { units}


User Hitttt
by
8.6k points
4 votes

Distance= \sqrt{(x_(2)-x_(1)) ^(2)+(y_(2)-y_(1))^2} = \sqrt{(58-29)^(2)+(14-14)^(2)} =29 But because x_(1)=x_(2), and it is a vertical segment, it is enough to find abs(y_(2) -y_(1))=|58-29|=29
User Scadge
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories