104k views
0 votes
What is the distance between the points (14, 29) and (14, 58) in the coordinate plane?

2 Answers

7 votes
Answer: 29 units

∞∞∞∞∞∞∞∞∞
Step-by-step explanation:
∞∞∞∞∞∞∞∞∞


\textnormal {Formula : Distance }= √((Y_2 - Y_1) ^2+(X_2 - X_1)^2)


\textnormal {Plug }(X_1 ,Y_1) = (14, 29) \textnormal { and } (X_2 , Y_2) = (14, 58) \textnormal { into the formula: }


\textnormal {Distance }= √((58 -29) ^2+(14-14)^2) = √(29^2 + 0^2) = √(841) = 29 \textnormal { units}


User Hitttt
by
6.4k points
4 votes

Distance= \sqrt{(x_(2)-x_(1)) ^(2)+(y_(2)-y_(1))^2} = \sqrt{(58-29)^(2)+(14-14)^(2)} =29 But because x_(1)=x_(2), and it is a vertical segment, it is enough to find abs(y_(2) -y_(1))=|58-29|=29
User Scadge
by
6.0k points