Expanding cos(alpha+beta) = cos(alpha)*cos(beta) - sin(alpha)*sin(beta)
Separating the denominator
cos(alpha+beta)/[sin(alpha)*cos(beta)] = cos(alpha)*cos(beta)/[sin(alpha)*cos(beta)] - sin(alpha)*sin(beta)/[sin(alpha)*cos(beta)]
Using Quotient Identity, the expression becomes
cos(alpha+beta)/[sin(alpha)*cos(beta)] = cos(alpha)/sin(alpha) - sin(beta)/cos(beta)
= cot(alpha) - tan(beta)