172k views
1 vote
The pair of square pyramids are similar. Use the given information to find the scale factor of the smaller square pyramid to the larger square pyramid. V= 64 in, V= 343 in

User Tnunamak
by
8.5k points

1 Answer

3 votes

\bf \qquad \qquad \textit{ratio relations} \\\\ \begin{array}{ccccllll} &\stackrel{ratio~of~the}{Sides}&\stackrel{ratio~of~the}{Areas}&\stackrel{ratio~of~the}{Volumes}\\ &-----&-----&-----\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3} \end{array}\\\\ -----------------------------


\bf \cfrac{\textit{similar shape}}{\textit{similar shape}}\qquad \cfrac{s}{s}=\cfrac{√(s^2)}{√(s^2)}=\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}}\\\\ -------------------------------\\\\ \stackrel{\stackrel{pyramids}{scale~factor}}{\cfrac{small}{large}}\qquad \qquad \cfrac{s}{s}=\cfrac{\sqrt[3]{64}}{\sqrt[3]{343}}\implies \cfrac{s}{s}=\cfrac{4}{7}\implies 4:7
User Hung Doan
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories