172k views
1 vote
The pair of square pyramids are similar. Use the given information to find the scale factor of the smaller square pyramid to the larger square pyramid. V= 64 in, V= 343 in

User Tnunamak
by
6.1k points

1 Answer

3 votes

\bf \qquad \qquad \textit{ratio relations} \\\\ \begin{array}{ccccllll} &\stackrel{ratio~of~the}{Sides}&\stackrel{ratio~of~the}{Areas}&\stackrel{ratio~of~the}{Volumes}\\ &-----&-----&-----\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3} \end{array}\\\\ -----------------------------


\bf \cfrac{\textit{similar shape}}{\textit{similar shape}}\qquad \cfrac{s}{s}=\cfrac{√(s^2)}{√(s^2)}=\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}}\\\\ -------------------------------\\\\ \stackrel{\stackrel{pyramids}{scale~factor}}{\cfrac{small}{large}}\qquad \qquad \cfrac{s}{s}=\cfrac{\sqrt[3]{64}}{\sqrt[3]{343}}\implies \cfrac{s}{s}=\cfrac{4}{7}\implies 4:7
User Hung Doan
by
6.4k points