225k views
0 votes
20 POINTS ! Evaluate ∫ e3x cosh 2x dx

A. 1/10e5x + 1/2ex + C B. 1/4e3x + 1/2 x + C C. 1/10e5x + 1/5 x + C D. 1/2e5x + 1/2ex + C

1 Answer

1 vote
Question:
Evaluate
\int{e^(3x)cosh(2x)dx

Solution:
substitute the identity

cosh(2x)=(e^(2x)+e^(-2x))/(2)
into integral

I=\int{e^(3x)cosh(2x)dx}

=\int{e^(3x)(e^(2x)+e^(-2x))/(2)dx}

=\int(e^(3x+2x))/(2)+(e^(3x-2x))/(2)dx

=\int(e^(5x))/(2)+(e^(x))/(2)dx

=(e^(5x))/(2*5)+(e^(x))/(2)+C

=(e^(5x))/(10)+(e^(x))/(2)+C

User Aldi Unanto
by
5.6k points