50.0k views
1 vote
What is the simplified form of the following expression 7(^3√2x)-3(^3√16x)-3(^3√8x)

2 Answers

7 votes

7 \sqrt[3]{2x} - 3 \sqrt[3]{16x} - 3 \sqrt[3]{8x}


7 \sqrt[3]{2x} - 3 \sqrt[3]{8 * 2x} - 3 \sqrt[3]{4 * 2x}


\sqrt[3]{2x} ( 7 - 3 \sqrt[3]{8} - 3 \sqrt[3]{4})


\sqrt[3]{2x} ( 7 - 6 - 3 \sqrt[3]{4})


\sqrt[3]{2x} ( 1 - 3 \sqrt[3]{4})


\sqrt[3]{2x} - 3 \sqrt[3]{8x}


\sqrt[3]{2x} - 6 \sqrt[3]{x}

User Vishal Chaudhry
by
6.0k points
7 votes

Answer:

The simplified form of the expression is
\sqrt[3]{2x}-6\sqrt[3]{x}

Explanation:

Given : Expression
7\sqrt[3]{2x}-3\sqrt[3]{16x}-3\sqrt[3]{8x}

To Simplified : The expression

Solution :

Step 1 - Write the expression


7\sqrt[3]{2x}-3\sqrt[3]{16x}-3\sqrt[3]{8x}

Step 2- Simplify the roots and re-write as


16=2^3*2 and
8=2^3


7\sqrt[3]{2x}-3*2\sqrt[3]{2x}-3*2\sqrt[3]{x}

Step 3- Solve the multiplication


7\sqrt[3]{2x}-6\sqrt[3]{2x}-6\sqrt[3]{x}

Step 4- Taking
\sqrt[3]{2x} common from first two terms


\sqrt[3]{2x}(7-6)-6\sqrt[3]{x}


\sqrt[3]{2x}-6\sqrt[3]{x}

Therefore, The simplified form of the expression is
\sqrt[3]{2x}-6\sqrt[3]{x}

User Juil
by
6.4k points