231k views
0 votes
A circle has a diameter of 26 units. What is the area of the circle to the nearest hundreth of a square unit?

2 Answers

5 votes
530.93
The answer for area.


User BenjaminK
by
8.7k points
4 votes

Answer:

The area of the circle having diameter of 26 is 530.66 square units.

Explanation:

Given:

Diameter of the circle= 26 units

To find:

Area of the circle =?

Solution:

Finding area using Diameter


\text {Area } A=\pi\left((d)/(2)\right)^(2)

substituting the values we get,


\text {Area } A=3.14\left((26)/(2)\right)^(2)


\text {Area } A=3.14(13)^(2)


\text {Area } A=3.14(169)


\text {Area } a=530.66 \text { units }

Following methods can also be used to find the area of the circle.

Aliter1: finding area using radius


\text {radius } r=\frac{\text {diamater}}{2}


\text {radius } r=(26)/(2)


\text {radius } r=13 \text {units}

Now ,


\text {Area } A=\pi r^(2)


\text {Area } A=(3.14)(13)^(2)


\text {Area } A=(3.14)(169)


\text {Area } A=530.66 \text { square units }

Aliter 2:Finding Area using circumference

Circumference of the circle
c=2 \pi r


c=2 *(3.14)(13)


c=2 *(40.82)


c=81.64 \text { units }

Now

\operatorname
{Area} A=(c^(2))/(4 \pi)

Substituting values,


\text {Area } A=(81.64)^(2) /(4 \pi)


\text {Area } A=(81.64)^(2) /(4)(3.14)


\text {Area } A=(665.08) /(4)(3.14)


\text { Area } A=(6665.08) /(12.56)


\text { Area } A=530.66 \text { square units }

Result:

Thus the area of the circle with a diameter 26 units is 530.66 square units.

User CappY
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories