231k views
0 votes
A circle has a diameter of 26 units. What is the area of the circle to the nearest hundreth of a square unit?

2 Answers

5 votes
530.93
The answer for area.


User BenjaminK
by
6.7k points
4 votes

Answer:

The area of the circle having diameter of 26 is 530.66 square units.

Explanation:

Given:

Diameter of the circle= 26 units

To find:

Area of the circle =?

Solution:

Finding area using Diameter


\text {Area } A=\pi\left((d)/(2)\right)^(2)

substituting the values we get,


\text {Area } A=3.14\left((26)/(2)\right)^(2)


\text {Area } A=3.14(13)^(2)


\text {Area } A=3.14(169)


\text {Area } a=530.66 \text { units }

Following methods can also be used to find the area of the circle.

Aliter1: finding area using radius


\text {radius } r=\frac{\text {diamater}}{2}


\text {radius } r=(26)/(2)


\text {radius } r=13 \text {units}

Now ,


\text {Area } A=\pi r^(2)


\text {Area } A=(3.14)(13)^(2)


\text {Area } A=(3.14)(169)


\text {Area } A=530.66 \text { square units }

Aliter 2:Finding Area using circumference

Circumference of the circle
c=2 \pi r


c=2 *(3.14)(13)


c=2 *(40.82)


c=81.64 \text { units }

Now

\operatorname
{Area} A=(c^(2))/(4 \pi)

Substituting values,


\text {Area } A=(81.64)^(2) /(4 \pi)


\text {Area } A=(81.64)^(2) /(4)(3.14)


\text {Area } A=(665.08) /(4)(3.14)


\text { Area } A=(6665.08) /(12.56)


\text { Area } A=530.66 \text { square units }

Result:

Thus the area of the circle with a diameter 26 units is 530.66 square units.

User CappY
by
6.2k points