71.1k views
10 votes
Solve ~

(d)/(dx) (2x {}^(2) - 4x + 1) \\

thankyou ~​

2 Answers

6 votes


\huge \rm༆ Answer ༄

Here's the solution ~


{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \: (d)/(dx) (2 {x}^(2) - 4x + 1)


{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \: (d)/(dx) (2 {x}^(2)) - (d)/(dx) ( 4x )+ (d)/(dx) (1)


{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \: (2 * 2x {}^(2 - 1) { }^{}) - ( 1 * 4x ^ {1 - 1})+ (0)


{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \: (2 * 2x {}^{} { }^{}) - ( 1 * 4 ^ {})+ 0


{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \:4x - 4

User Benjamin Batistic
by
8.1k points
9 votes

Answer:


\sf = > (d)/(dx) ( {2x}^(2) - 4x + 1)


\sf = > (d)/(dx) ( {2x}^(2) ) +(d)/(dx) ( - 4x) + (d)/(dx) (1)


\sf = > 2(d)/(dx) ( {x}^(2) ) + (d)/(dx) ( - 4x) + (d)/(dx) (1)


\sf= > 2(2x) + (d)/(dx) ( - 4x) + (d)/(dx) (1)


\sf \: = > 4x + (d)/(dx) ( - 4x) + (d)/(dx) (1)


\sf \: = > 4x - 4(d)/(dx) (x) + (d)/(dx) (1)


\sf = > 4x - 4 * 1 + (d)/(dx) (1)


\sf \: = > 4x - 4 + 0


\sf = > 4x - 4

User Jobayer Ahmmed
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories