71.1k views
10 votes
Solve ~

(d)/(dx) (2x {}^(2) - 4x + 1) \\

thankyou ~​

2 Answers

6 votes


\huge \rm༆ Answer ༄

Here's the solution ~


{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \: (d)/(dx) (2 {x}^(2) - 4x + 1)


{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \: (d)/(dx) (2 {x}^(2)) - (d)/(dx) ( 4x )+ (d)/(dx) (1)


{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \: (2 * 2x {}^(2 - 1) { }^{}) - ( 1 * 4x ^ {1 - 1})+ (0)


{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \: (2 * 2x {}^{} { }^{}) - ( 1 * 4 ^ {})+ 0


{ \qquad{ \sf{ \dashrightarrow}}}  \:  \: \sf \:4x - 4

User Benjamin Batistic
by
4.1k points
9 votes

Answer:


\sf = > (d)/(dx) ( {2x}^(2) - 4x + 1)


\sf = > (d)/(dx) ( {2x}^(2) ) +(d)/(dx) ( - 4x) + (d)/(dx) (1)


\sf = > 2(d)/(dx) ( {x}^(2) ) + (d)/(dx) ( - 4x) + (d)/(dx) (1)


\sf= > 2(2x) + (d)/(dx) ( - 4x) + (d)/(dx) (1)


\sf \: = > 4x + (d)/(dx) ( - 4x) + (d)/(dx) (1)


\sf \: = > 4x - 4(d)/(dx) (x) + (d)/(dx) (1)


\sf = > 4x - 4 * 1 + (d)/(dx) (1)


\sf \: = > 4x - 4 + 0


\sf = > 4x - 4

User Jobayer Ahmmed
by
4.0k points